
MODULE 3

SQL DML, Physical Data Organization

Sindhu Jose, CSE Dept, VJCET

SYLLABUS

 SQL DML (Data Manipulation Language)

 SQL queries on single and multiple tables, Nested queries

(correlated and non-correlated), Aggregation and grouping,

Views, assertions,Triggers, SQL data types.

 Physical Data Organization

 Review of terms: physical and logical records, blocking

factor, pinned and unpinned organization. Heap files,

Indexing, Singe level indices, numerical examples, Multi-

level-indices, numerical examples, B-Trees & B+-Trees

(structure only, algorithms not required), Extendible

Hashing, Indexing on multiple keys – grid files

Sindhu Jose, CSE Dept, VJCET

Data-manipulation language(DML)

 DML is short name of Data Manipulation

Language which deals with data manipulation and includes

most common SQL statements such SELECT, INSERT,

UPDATE, DELETE, etc., and it is used to store, modify,

retrieve, delete and update data in a database.

 SELECT - retrieve data from a database

 INSERT - insert data into a table

 UPDATE - updates existing data within a table

 DELETE - Delete all records from a database table

Sindhu Jose, CSE Dept, VJCET

https://www.w3schools.in/mysql/php-mysql-select/
https://www.w3schools.in/mysql/php-mysql-insert/
https://www.w3schools.in/mysql/php-mysql-update/
https://www.w3schools.in/mysql/php-mysql-delete/

SQL queries on single and multiple tables

 SQL has one basic statement for retrieving information from a

database; the SELECT statement

SELECT <attribute list>

FROM <table list>

WHERE <condition>

 <attribute list>

 is a list of attribute names whose values are to be retrieved by the

query

 <table list>

 is a list of the relation names required to process the query

 <condition>

 is a conditional (Boolean) expression that identifies the tuples to be

retrieved by the query
Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

Q0.Retrieve the birth date and address of the employee(s) whose

name is ‘John B. Smith’.

Sindhu Jose, CSE Dept, VJCET

 Q1. Retrieve the name and address of all employees who work for

the ‘Research’ department.

• Q2. For every project located in ‘Stafford’, list the project number,

the controlling department number, and the department manager’s

last name, address, and birth date

Sindhu Jose, CSE Dept, VJCET

Dealing with Ambiguous Attribute Names and

Renaming (Aliasing)

 In SQL the same name can be used for two (or more) attributes as

long as the attributes are in different relations.

 If this is the case, and a query refers to two or more attributes with

the same name, we must qualify the attribute name with the

relation name, to prevent ambiguity.

 This is done by prefixing the relation name to the attribute name

and separating the two by a period (.)

Eg) Suppose that the DNO and LNAME attributes of the

EMPLOYEE relation were called DNUMBER and NAME and the

DNAME attribute of DEPARTMENT was also called NAME;

then, to prevent ambiguity, query Q1 would be rephrased as

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

Q3.For each employee, retrieve the employee’s first and last name

and the first and last name of his or her immediate supervisor.

 Alternative relation names E and S are called aliases or tuple

variables, for the EMPLOYEE relation.

 An alias follow the keyword AS

 It is also possible to rename the relation attributes within the query

in SQL by giving them aliases.

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

Use of the Asterisk (*)

 To retrieve all the attribute values of the selected tuples, we do not

have to list the attribute names explicitly in SQL;

 we just specify an asterisk (*), which stands for all the attributes

Q) Retrieves all the attribute values of any EMPLOYEE who works

in DEPARTMENT number 5

Q)Retrieves all the attributes of an EMPLOYEE and the attributes of

the DEPARTMENT in which he or she works for every employee

of the ‘Research’ department

Sindhu Jose, CSE Dept, VJCET

Tables as Sets in SQL

 SQL usually treats a table not as a set but rather as a multiset;

 duplicate tuples can appear more than once in a table, and in the

result of a query.

 SQL does not automatically eliminate duplicate tuples in the results

of queries.

DISTINCT Keyword

 to eliminate duplicate tuples from the result of an SQL querys we

use the keyword DISTINCT in the SELECT clause

 only distinct tuples should remain in the result

 a query with SELECT DISTINCT eliminates duplicates,

whereas a query with SELECT ALL does not.

 SELECT with neither ALL nor DISTINCT is equivalent to

SELECT ALL

Sindhu Jose, CSE Dept, VJCET

Q) Retrieves the salary of every employee without distinct

Q) Retrieves the salary of every employee using

keyword DISTINCT

Sindhu Jose, CSE Dept, VJCET

UNION, EXCEPT and INTERSECT

 set union (UNION), set difference (EXCEPT), and set intersection
(INTERSECT) operations.

 The relations resulting from these set operations are sets of tuples;
that is, duplicate tuples are eliminated from the result.

 These set operations apply only to union-compatible relations, so
we must make sure that the two relations on which we apply the
operation have the same attributes and that the attributes appear in
the same order in both relations

UNION ALL

 The UNION ALL command combines the result set of two or more
SELECT statements (allows duplicate values).

Sindhu Jose, CSE Dept, VJCET

Example 1: UNION

Sindhu Jose, CSE Dept, VJCET

Example 2: UNION ALL

Sindhu Jose, CSE Dept, VJCET

Eg 3) Make a list of all project numbers for projects that involve an

employee whose last name is ‘Smith’, either as a worker or as a

manager of the department that controls the project.

 The first SELECT query retrieves the projects that involve a ‘Smith’ as

manager of the department that controls the project, and the second

retrieves the projects that involve a ‘Smith’ as a worker on the project.

Applying the UNION operation to the two SELECT queries gives the

desired result.
Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

INTERSECT Operator

 INTERSECT operator is used to return the records that are in

common between two SELECT statements or data sets.

 It is the intersection of the two SELECT statements.

Example 1: INTERSECT

EXAMPLE 2 : INTERSECT

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

EXCEPT

 The SQL EXCEPT clause/operator is used to combine two

SELECT statements and returns rows from the first SELECT

statement that are not returned by the second SELECT statement.

 This means EXCEPT returns only rows, which are not

available in the second SELECT statement.

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

Example 1: EXCEPT

SELECT * FROM First

EXCEPT SELECT * FROM Second;

Sindhu Jose, CSE Dept, VJCET

Substring Pattern Matching and Arithmetic Operators

 LIKE comparison operator can be used to compare parts of a

character string.

 This can be used for string pattern matching.

 Partial strings are specified using two reserved characters:

 % replaces an arbitrary number of zero or more characters, and

the underscore (_) replaces a single character.

Q) Retrieve all employees name whose address is in Houston, Texas.

Sindhu Jose, CSE Dept, VJCET

Q) Find all employees name who were born during the 1950s.

 To retrieve all employees who were born during the 1950s,

 Here, ‘5’ must be the third character of the string (according to our

format for date),

 so we use the value ‘_ _ 5 _ _ _ _ _ _ _’, with each underscore

serving as a placeholder for an arbitrary character.

Sindhu Jose, CSE Dept, VJCET

BETWEEN

Q)Retrieve all employees in department 5 whose salary is between $30,000 and
$40,000.

instead of

Ordering of Query Results

 The tuples in the result of a query can be ordered by the values of one or more
of the attributes that appear in the query result, using the ORDER BY clause.

 The ORDER BY statement in sql is used to sort the fetched data in either
ascending or descending according to one or more columns.

 By default ORDER BY sorts the data in ascending order.

 We can use the keyword DESC to sort the data in descending order and the
keyword ASC to sort in ascending order.

Sindhu Jose, CSE Dept, VJCET

The condition (Salary BETWEEN 30000 AND 40000) in Q14

is equivalent to the condition

((Salary >= 30000) AND (Salary <= 40000))

Q) Fetch all data from the table Student and sort the result in

descending order according to the column ROLL_NO.

Sindhu Jose, CSE Dept, VJCET

Student Table

Q) Fetch all data from the table Student and then sort the result in

ascending order first according to the column Age. and then in

descending order according to the column ROLL_NO.

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

 Q) Retrieve a list of employees and the projects they

are working on,

ordered by department and, within each department,

ordered alphabetically by last name, then first name.

Sindhu Jose, CSE Dept, VJCET

NESTED QUERIES

Correlated Nested Queries

 Some queries require that existing values in the database be
fetched and then used in a comparison condition.

 Such queries can be formulated by using nested queries, which
are complete SELECT . . . FROM . . . WHERE . . . blocks
within the WHERE-clause of another query.

 That other query is called the outer query.

 In nested queries, the comparison operator IN compares a
value v with a set (or multi-set) of values V, and evaluates to
TRUE if v is one of the elements in V.

 In addition to ‘IN’ operator, all other comparison operators
such as (>,>=,<,<= and < >) can be combined with the
keywords ANY or ALL.

 Whenever a condition in the WHERE-clause of a nested query

references some attribute of a relation declared in the outer query,

the two queries are said to be correlated.

Q) Retrieve the name of each employee who has a dependent with

the same first name and same sex as the employee.

SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E

WHERE E.Ssn IN (SELECT Essn FROM DEPENDENT

AS D WHERE E.Fname= D.Dependent_name AND

E.Sex = D.Sex);

Sindhu Jose, CSE Dept, VJCET

 Here the nested query has a different result for each tuple in the

outer query.

 A query written with nested SELECT... FROM... WHERE...

 blocks and using the = or IN comparison operators can always be

expressed as a single block query.

SELECT E.Fname, E.Lname FROM EMPLOYEE AS E, DEPENDENT

AS D WHERE E.Ssn = D.Essn AND E.Sex = D.Sex AND

E.Fname=D.Dependent_name;

Sindhu Jose, CSE Dept, VJCET

 The IN operator can also compare a tuple of values in parentheses

with a set or multiset of union-compatible tuples.

Example:

 Here it will select the social security numbers of all employees

who work the same (project, hours) combination on some project

that employee ‘John Smith’ (whose SSN = ‘123456789’) works on.

 In addition to the IN operator, a number of other comparison

operators can be used to compare a single value v (typically an

attribute name) to a set or multiset V (typically a nested query).

Sindhu Jose, CSE Dept, VJCET

 The = ANY (or = SOME) operator returns TRUE if the value v is

equal to some value in the set V and is hence equivalent to IN.

 The keywords ANY and SOME have the same meaning.

 Other operators that can be combined with ANY (or SOME)

include >, >=, <, <=, and <>.

 The keyword ALL can also be combined with each of these

operators.

 For example, the comparison condition (v > ALL V) returns TRUE

if the value v is greater than all the values in the set V.

Q) Retrieve the names of employees whose salary is greater than the

salary of all the employees in department 5:

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > ALL (SELECT SALARY FROM

EMPLOYEE WHERE DNO=5);

Sindhu Jose, CSE Dept, VJCET

Non-Correlated Nested Queries

Q) Retrieve the name and address of all employees who work for the
‘Research’ Department

 The nested query selects the number of the 'Research' department

 The outer query select an EMPLOYEE tuple if its DNO value is in the
result of either nested query.

 In general, we can have several levels of nested queries

 A reference to an unqualified attribute refers to the relation declared in
the innermost nested query

 In this example, the nested query is not correlated with the outer query

SELECT FNAME,LNAME, ADDRESS

FROM EMPLOYEE

WHERE DNO IN (SELECT DNUMBER

FROM DEPARTMENT

WHERE DNAME=’Research’)

Sindhu Jose, CSE Dept, VJCET

Aggregation and Grouping

 Aggregate functions are used to summarize information from

multiple tuples into a single tuple summary.

 In SQL, built-in functions of aggregation are:

1) AVG 2) MIN 3) MAX 4) COUNT and 5) SUM

1) AVG : It returns an average value of ‘n’, ignoring null values in

column.

Eg) SELECT AVG (mark) FROM student;

2) MIN : SELECT MIN (mark) FROM student;

3) MAX: SELECT MAX (mark) FROM student;

4) COUNT : It returns the number of tuples or values as specified in

a query.

Eg) SELECT COUNT (*) FROM student;

5)SUM : SELECT SUM (mark) FROM student;

Sindhu Jose, CSE Dept, VJCET

Q) Find the sum of the salaries of all employees, the maximum salary, the minimum
salary, and the average salary.

SELECT SUM (SALARY), MAX (SALARY), MIN (SALARY), AVG
(SALARY) FROM EMPLOYEE;

Q) Find the sum of the salaries of all employees of the ‘Research’ department, as well
as the maximum salary, and the average salary in this department.

SELECT SUM (SALARY), MAX (SALARY), MIN (SALARY),
AVG (SALARY) FROM EMPLOYEE, DEPARTMENT WHERE
DNO=DNUMBER AND DNAME=‘Research’;

Q) Retrieve i) the total number of employees in the company and ii) the number of
employees in the ‘Research’ department.

i)SELECT COUNT (*) FROM EMPLOYEE;

ii) SELECT COUNT (*) FROM EMPLOYEE, DEPARTMENT
WHERE DNO=DNUMBER AND DNAME=‘Research’;

Sindhu Jose, CSE Dept, VJCET

Q) Count the number of distinct salary values in the database.

SELECT COUNT (DISTINCT SALARY) FROM EMPLOYEE;

Q) Retrieve the names of all employees who have two or more

dependents

SELECT LNAME, FNAME FROM EMPLOYEE WHERE (SELECT

COUNT (*) FROM DEPENDENT WHERE SSN=ESSN) >= 2;

 Here the correlated nested query counts the number of dependents

that each employee has; if this is greater than or equal to 2, the

employee tuple is selected.

Sindhu Jose, CSE Dept, VJCET

Grouping : GROUP BY and HAVING Clauses

 In order to partition the relation into non overlapping subsets(or

groups) of tuples, each group will consist of the tuples that have

the same value of attributes called the grouping attributes.

 We can apply the function to each such group independently to

produce summary information about each group.

 SQL has a GROUP BY clause for this purpose.

 The GROUP BY clause specifies the grouping attributes which

should also appear in the SELECT clause, so that the value

resulting from applying each aggregate function to a group of

tuples appears along with the value of the grouping attributes.

Sindhu Jose, CSE Dept, VJCET

Q) For each department, retrieve the department number, the number

of employees in the department, and their average salary.

SELECT DNO, COUNT (*), AVG (SALARY) FROM EMPLOYEE

GROUP BY DNO;

Q) For each project, retrieve the project number, the project name,

and the number of employees who work on that project.

SELECT PNUMBER, PNAME, COUNT (*) FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO GROUP BY PNUMBER, PNAME;

Sindhu Jose, CSE Dept, VJCET

HAVING Clause

 It is useful to state a condition that applies to groups rather than to

tuples.

 It can be used in conjunction with the GROUP BY clause

 HAVING provides a condition on the group of tuples associated

with each value of the grouping attributes and only the groups that

satisfy the condition are retrieved in the result of the query.

Q) For each project on which more than two employees work,

retrieve the project number, the project name, and the number of

employees who work on the project.

SELECT PNUMBER, PNAME, COUNT (*) FROM PROJECT,

WORKS_ON WHERE PNUMBER=PNO GROUP BY PNUMBER,

PNAME HAVING COUNT (*) > 2;

Sindhu Jose, CSE Dept, VJCET

Q)For each project, retrieve the project number, the project name, and

the number of employees from department 5 who work on the

project.

SELECT PNUMBER, PNAME, COUNT (*) FROM PROJECT,

WORKS_ON, EMPLOYEE WHERE PNUMBER=PNO AND

SSN=ESSN AND DNO=5 GROUP BY PNUMBER, PNAME;

Q)For each department that has more than five employees, retrieve the

department number and the number of its employees who are

making more than $40,000.

SELECT Dnumber, COUNT (*) FROM DEPARTMENT, EMPLOYEE

WHERE Dnumber=Dno AND Salary>40000 AND (SELECT Dno

FROM EMPLOYEE GROUP BY Dno HAVING COUNT (*) > 5)

Sindhu Jose, CSE Dept, VJCET

VIEWS

A view in SQL terminology is a single table that is derived from

other tables

 These other tables could be base tables or previously defined

views. A view does not necessarily exist in physical form; it is

considered a virtual table

 view is a way of specifying a table that we need to reference

frequently, even though it may not exist physically.

Specification of Views in SQL

 The command to specify a view is CREATE VIEW.

 The view is given a (virtual) table name (or view name), a list of
attribute names, and a query to specify the contents of the view.

 Eg) VIEW V1
Sindhu Jose, CSE Dept, VJCET

V1 : CREATE VIEW WORKS_ON1

AS SELECT FNAME, LNAME, PNAME, HOURS

FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE SSN=ESSN AND PNO=PNUMBER;

V2: CREATE VIEW DEPT_INFO(DEPT_NAME, NO_OF_EMPS,

TOTAL_SAL)

AS SELECT DNAME, COUNT (*), SUM (SALARY)

FROM DEPARTMENT, EMPLOYEE

WHERE DNUMBER=DNO

GROUP BY DNAME;

Sindhu Jose, CSE Dept, VJCET

 In View V1, we did not specify any new attribute names for the

view WORKS_ON1 (although we could have); in this case,

WORKS_ON1 inherits the names of the view attributes from the

defining tables EMPLOYEE, PROJECT, and WORKS_ON.

 View V2 explicitly specifies new attribute names for the view

DEPT_INFO, using a one-to-one correspondence between the

attributes specified in the CREATE VIEW clause and those

specified in the SELECT-clause of the query that defines the view.

 We can specify SQL queries on a view—or virtual table—in the

same way we specify queries involving base tables.

 For example, to retrieve the last name and first name of all

employees who work on ‘ProjectX’, we can utilize the

WORKS_ON1 view and specify the query as in QV1:

Sindhu Jose, CSE Dept, VJCET

SELECT Fname, Lname

FROM WORKS_ON1

WHERE Pname=‘ProjectX’;

 one of the main advantages of a view is to simplify the

specification of certain queries.

 Views are also used as a security and authorization mechanism

 A view is always up to date; if we modify the tuples in the base

tables on which the view is defined, the view must automatically

reflect these changes.

 If we do not need a view any more, we can use the DROP VIEW

command to dispose of it .

Eg) DROP VIEW WORKS_ON1;

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

View Implementation, View Update and Inline Views

 The problem of efficiently implementing a view for querying is
complex. For that, two main approaches have been suggested.

1) query modification 2) view materialization

1) query modification involves modifying the view query into a
query on the underlying base tables.

 The previous query V1 would be automatically modified to the
following query by the DBMS.

 The disadvantage of this approach is that the views defined via
complex queries are time-consuming to execute, especially if
multiple queries are going to be applied to the same view
within a short period of time.

2) View Materialization involves physically creating a temporary

view table when the view is first queried and keeping that table on

the assumption that other queries on the view will follow.

 Here the view tables are updated automatically in accordance with

the updations in base tables. Thus keep the view up-to-date.

 An incremental update technique is used for this purpose where the

DBMS can determine what new tuples must be inserted, deleted or

modified in a materialized view table, when a database update is

applied to one of the defining base tables.

 The view is kept as a materialized(physically stored)table as long

as it is being queried.

Sindhu Jose, CSE Dept, VJCET

View Update

 Updating of views is complicated and can be ambiguous.

 Consider the WORKS_ON1 view, and suppose that we issue the

command to update the PNAME attribute of ‘John Smith’ from

‘ProductX’ to ‘ProductY’.

 This view update is shown in UV1

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

UPDATING VIEWS

There are certain conditions needed to be satisfied to update a view.
If any one of these conditions is not met, then we will not be
allowed to update the view.

 The SELECT statement which is used to create the view should
not include GROUP BY clause or ORDER BY clause.

 The view must include the PRIMARY KEY of the table based
upon which the view has been created.

 The SELECT statement should not have the DISTINCT keyword.

 The View should have all NOT NULL values.

 The view should not be created using nested queries or complex
queries.

 The view should be created from a single table. If the view is
created using multiple tables then we will not be allowed to
update the view.

Sindhu Jose, CSE Dept, VJCET

Database system uses one of the three ways to keep the

materialized view updated:

 Update the materialized view as soon as the relation on which it

is defined is updated.

 Update the materialized view every time the view is accessed.

 Update the materialized view periodically.

in-line view

 It is also possible to define a view table in the FROM clause of

an SQL query. This is known as an in-line view. In this case, the

view is defined within the query itself.

Sindhu Jose, CSE Dept, VJCET

Uses of a View :
A good database should contain views due to the given reasons:

 Restricting data access –
Views provide an additional level of table security by restricting access
to a predetermined set of rows and columns of a table.

 Hiding data complexity –
A view can hide the complexity that exists in a multiple table join.

 Simplify commands for the user –
Views allows the user to select information from multiple tables without
requiring the users to actually know how to perform a join.

 Store complex queries –
Views can be used to store complex queries.

 Rename Columns –
Views can also be used to rename the columns without affecting the base
tables provided the number of columns in view must match the number
of columns specified in select statement. Thus, renaming helps to to hide
the names of the columns of the base tables.

 Multiple view facility –
Different views can be created on the same table for different users.

ASSERTIONS

 Assertions can be used to specify additional types of constraints

that are outside the scope of the built-in relational model

constraints (primary key & unique keys, entity integrity and

referential integrity).

Specifying General Constraints as Assertions in SQL

 In SQL, we can specify general constraints through declarative

assertions, using CREATE ASSERTION statement.

 Each assertion is given a constraint name and is specified via a

condition similar to the WHERE clause of an SQL query.

 The basic technique for writing assertions is to specify a query that

selects any tuples that violate the desired condition.

Sindhu Jose, CSE Dept, VJCET

General form of Assertion

Sindhu Jose, CSE Dept, VJCET

Q)The total length of all movies by a given studio shall not exceed

10,000 minutes.

 Since this constraint involves only the relation Movies, it can be

expressed as a tuple-based CHECK constraint.

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

Eg) The salaries of an employee must not be greater than the salary

of the manager of the corresponding department

CREATE ASSERTION Salary_check CHECK(NOT EXISTS

(SELECT * FROM Employee e, Employee m, Department d

WHERE e.salary>m.salary AND e.Dno= d.Dunmber AND

d.mgr_ssn=m.ssn));

Note: The EXISTS operator is used to test for the existence of

any record in a subquery. The NOT EXISTS in SQL Server

will check the Subquery for rows existence, and if there

are no rows then it will returnTRUE, otherwise FALSE.

TRIGGERS

 A trigger is a statement that the system executes automatically as a

side effect of a modification to the database.

 A trigger is a stored procedure in database which automatically

invokes whenever a special event in the database occurs.

 Action to be taken when certain events occur and when certain

conditions are satisfied.

 For example,

 a trigger can be invoked when a row is inserted into a specified table

or when certain table columns are being updated.

 it may be useful to specify a condition that, if violated, causes some

user to be informed of the violation

Sindhu Jose, CSE Dept, VJCET

Benefits of Triggers

 Generating some derived column values automatically

 Enforcing referential integrity

 Event logging and storing information on table access

 Auditing

 Synchronous replication of tables

 Imposing security authorizations

 Preventing invalid transactions

Sindhu Jose, CSE Dept, VJCET

Types of Triggers

Sindhu Jose, CSE Dept, VJCET

 Row Trigger :Trigger is fired each time a row in the table

is affected

 Statement Trigger :Trigger is fired even if no rows are

affected

 Before/After Trigger : These triggers apply to both row

and statement trigger which is to be specify trigger timing.

Syntax: Trigger

Sindhu Jose, CSE Dept, VJCET

Creating Triggers (complete syntax)

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

 CREATE [OR REPLACE] TRIGGER trigger_name
 Creates or replaces an existing trigger with the trigger_name.

 {BEFORE | AFTER }
 This specifies when the trigger will be executed. (before or after

the triggering statement)

 {INSERT [OR] | UPDATE [OR] | DELETE}
 This specifies the DML operation.

 [OF col_name]
 This specifies the column name that will be updated.

 [ON table_name]
 This specifies the name of the table associated with the trigger.

 [REFERENCING OLD AS o NEW AS n]

 This allows you to refer new and old values for various DML

statements, such as INSERT, UPDATE, and DELETE.

 [FOR EACH ROW]

 This specifies a row-level trigger, i.e., the trigger will be executed for

each row being affected.

 Otherwise the trigger will execute just once when the SQL statement is

executed, which is called a table level trigger.

 WHEN (condition)

 This provides a condition for rows for which the trigger would fire.

 This clause is valid only for row-level triggers.

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

Example: Given Student Report Database, in which student marks
assessment is recorded. In such schema, create a trigger so that
the total and average of specified marks is automatically inserted
whenever a record is insert.

Note: Here, as trigger will invoke before record is inserted so,
BEFORE tag can be used.

create trigger stud_marks before INSERT on Student for
each row set Student.total = Student.subj1 + Student.subj2 +
Student.subj3, Student.per = Student.total * 60 / 100;

 Above SQL statement will create a trigger in the student database
in which whenever subjects marks are entered, before inserting
this data into the database, trigger will compute those two values
and insert with the entered values.

Sindhu Jose, CSE Dept, VJCET

mysql> insert into Student values(100, "ABCDE", 20, 20, 20, 0, 0);

Student

Example

 Create a row-level trigger for the customers table that would fire

for INSERT or UPDATE or DELETE operations performed on the

CUSTOMERS table.

 This trigger will display the salary difference between the old

values and new values.

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

